Removal of Ni (II) ions from Aqueous Solutions Using Origanum majorana-Capped Silver NanoParticles Synthesis Eequilibrium

Authors: not saved
Abstract:

The applicability of Origanum majorana-Capped Silver nanoparticles synthesis for removing Ni (II) ions from aqueous solutions has been reported. This novel material was characterized by different techniques such as FT-IR, XRD and SEM. The influence of nanoparticle dosage, pH of the sample solution, individual ions concentration, temperature, contact time between the sample and the adsorbent were studied by performing a batch adsorption technique. The maximum removal of 30 mg L-1 of individual ions from an aqueous sample solution at pH 9.0 for Ni (II) ions was achieved within 60 min when an adsorbent amount of 40 mg for Ni (II) ions was used. It was shown that the adsorption of Ni (II) ions follows the pseudo-second-order rate equation, while the Langmuir model explains equilibrium data. Isotherms had also been used to obtain the thermodynamic parameters such as free energy (ΔG0), enthalpy (ΔH0) and entropy (ΔS0) of adsorption. The negative value of (ΔGo, ΔHo and ΔSo) confirmed the sorption process was endothermic reflects the affinity of origanum majorana-capped silver nanoparticles synthesis for removing Ni (II) ions. A maximum adsorption capacity in binary-component system (180.0 mg/g for Ni (II) ions).

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Removal of Hg (I) and Hg (II) Ions from Aqueous Solutions, Using TiO2 Nanoparticles

For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results ha...

full text

Removal of Hg (I) and Hg (II) Ions from Aqueous Solutions, Using TiO2 Nanoparticles

For the first time, the present study removes ions of mercury, in the form of Hg (I) and Hg (II) ions, from aqueous solutions by adsorbing them onto titanium dioxide nanoparticles. The effects of various parameters, such as solution's initial pH, temperature, sorbent dosage, initial mercury concentration, and contact time have been examined on the adsorption process. The experimental results ha...

full text

Removal of Pb(II) and Cu(II) Ions from ‎Aqueous Solutions by Cadmium Sulfide ‎Nanoparticles

   In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...

full text

Removal of Ni(II) and Zn(II) from Aqueous Solutions Using Chitosan

Background & Aims of the Study:  The increasing levels of toxic heavy metals discharged into the environment have received considerable attention due to the adverse effects on receiving waters. Therefore, the developed adsorbent was assessed for its practical role in removal of metal ions from industrial wastewater. The purpose of the present work is to investigate the removal of Ni(II) an...

full text

Removal of Nickel (II) ions from aqueous solutions using Iron (III) oxide nanoparticles: study of kinetic, isotherm and thermodynamic models

Background and Objective: Due to the existence of industries such as stainless steel, the presence of nickel (II) ions in water and wastewater has been reported at high concentrations. Removal of nickel (II) ions from wastewater and the environment are of primary importance. In this study, iron (III) oxide nanoparticles were studied as an adsorbent for removal of Ni (II) ions from water in the ...

full text

Adsorption of Co(II) ions from aqueous solutions using NiFe2O4 nanoparticles

In this study, NiFe2O4 nanoparticles (NiFe2O4 NPs) were prepared through co-precipitation method and subsequently used for the removal of Co(II) ions from aqueous solutions. The NiFe2O4 NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction spectrometry (XRD), and Brunauer-Emmett-Teller (BET) surface area analysis. In batch tests, the effects of variables such as pH...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue Issue 2 (Fall 2019 and Winter 2020) 3 and 4

pages  75- 90

publication date 2020-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023